Using Microsoft Excel® Functionality to Promote Academic Integrity in the Business Classroom
Mary Funck and Ashly Smith

The authors of this paper have developed a technique in Microsoft Excel® that easily allows instructors to create assignments customized for each student in a class. Using assignments that vary input values and/or question prompts serves as a deterrent to assignment ‘over-sharing’ behaviors on the part of students.

INTRODUCTION

Assignments and exams in academic courses are generally designed to assess students’ mastery of course content. To create an assessment that will accurately measure a student’s knowledge and ability, it is often necessary for professors to incorporate in the assessment activity, safeguards against academic dishonesty. Preventing and detecting academic dishonesty may be particularly relevant in business courses given that, despite a common emphasis on ethical behavior in business curricula, some survey research shows that 75% of surveyed Master of Business Administration (MBA) students admit to cheating in order to gain admission to their graduate programs (Cardon, 2018, p. 5).

Computer software programs provide several options for detecting various forms of academic dishonesty. These programs, which are often available within learning management systems (LMS), identify inappropriate behavior by reviewing assignment submissions for plagiarism and video recording students while they complete tests.

An alternate approach of promoting academic integrity focuses on the prevention of unethical behavior rather than on its detection (Michael & Williams, 2013). For example, LMS, like Blackboard, can deter academic dishonesty by blocking students from viewing prohibited resources during a test period. “Locking down” the testing environment, however, often disallows students’ access to resources that are essential to the completion of an assessment activity.

LMS also discourage academic dishonesty by offering the capability to randomize the question text or numeric inputs used in assignment/test problems. Some instructors, however, do not feel competent to or face time constraints in setting up the sometimes-complicated rules and systems needed to create these randomized questions in an LMS. In addition, some instructors would rather assign a test or project outside of the LMS in order to help students more effectively learn a necessary software program—like Microsoft Excel—or because another program offers better opportunities to practice the course material.

Unfortunately, students’ creativity and ingenuity allow them to develop techniques to circumvent nearly every strategy implemented by professors for the prevention and detection of behaviors associated with academic dishonesty. One such strategy that students use to “help” each other earn high scores on assessment activities is to share an activity’s questions and solutions. Within this strategy, one student completes the assessment, records the questions, and then shares the questions and solutions with other students—sometimes even saving the question/answer information in a database or posting it to online sites for students who enroll in later sections of the course. For assessments that involve the submission of an electronic file, such as a Microsoft Word or Excel file, this “sharing” of an assessment solution can be accomplished easily by copying a file and modifying a few of its properties.

The technique introduced in this article attempts to discourage academic dishonesty by using Excel functionality to present each student completing an assessment (assignment or test) with a different set of inputs to common questions and/or by modifying the assignment tasks presented to each student (thus producing unique resulting solutions). Although this technique can aid in the detection of academic dishonesty, it was developed with the understanding that providing unique assignments to each student increases the effort required for students to “share” solutions and thus encourages students to complete independently their own assessment activities.

We use a simplified example to demonstrate this technique. The sample assessment involves an assignment that

(1) Presents unique inputs to a calculated problem for each student (on worksheet #1 of our example file), and

(2) Asks students to solve a different task - one version of the assignment requests the calculation of the future value of a financial instrument while another version instructs a student to compute the present value (on worksheet #2 of our example file).

The technique used in this simple example can easily be expanded to create assessments that are more complex and substantially different for each student. In addition, this demonstration utilizes an assessment completed by students solely within Excel; it could also be used to generate unique
instructions or assessment instruments that are saved to PDF files or are printed for distribution.

METHODOLOGY

The following six steps can be followed to implement this technique.

Within the assignment (Excel) workbook:
1. Create a separate worksheet that lists in consecutive worksheet rows, the name of each student and the corresponding unique values (i.e. numerical inputs or question text). I refer to this worksheet as the ‘Information’ worksheet. In the image below, note that student names are listed in column A, and unique values for each student are listed (by row) in columns B through H.

 The unique values in columns B through D will be used on worksheet #1 to provide different inputs to common tasks for each student. In Figure 1, note that student Linsay (worksheet row 2) has a ‘Widget Increment’ of 25 (column B) where student Karter’s (worksheet row 3) widget increment is 30.

 The unique values in columns E through H will be used on worksheet #2. Values in column E will instruct students to complete different question statements - to compute either the present or the future value of a financial instrument, whose characteristics are determined by the values in columns F through H.

2. Modify the assignment workbook by adding worksheet(s) that contain the generic (non-dynamic) portion of the assignment. The content can encompass one or many worksheets - it need only contain opportunities for substituting unique values or question statements for each student. Note that in the figures 2A and 2B, only the text that is consistent for all students is entered into the worksheet at this point of the assignment completion process. The characters ‘***’ have been included in the image to indicate the position at which the dynamic values/text will later be incorporated.

3. Modify the assignment workbook by adding an ‘Instructions’ worksheet. On this worksheet, use Excel’s list data validation to allow each student to select his or her name as the assignment’s author (cell B2). The student’s name becomes the ‘lookup’ value used to identify the correct row of unique values on the ‘Information’ worksheet. Requiring students to select their name from a list created using data validation is essential, as the name selected on the ‘Instructions’ worksheet must exactly match the list of student names in the first column of data on the ‘Information’ worksheet.

4. Modify the assignment workbook by incorporating Excel’s CONCATENATE, VLOOKUP and TEXT functions – these functions work in tandem to insert the
unique, formatted values/question text into the
assignment. The VLOOKUP function ‘looks up’ the
values in the data region unique to the student
completing the assignment (finds the correct row on the
‘Information’ worksheet). The TEXT function converts
the unique numeric inputs into formatted text strings.
Then, the CONCATENATE function joins the static
(generic) portion of the question prompt with the
formatted, dynamic portion to create a set of inputs or
question prompt that is unique to each student.

For each of these functions, I include the function
signatures and an explanation of each of the function
arguments.

The VLOOKUP function matches a value in the first
row of a vertical table structure and returns data
contained in the matching row.

The VLOOKUP function

The arguments in the VLOOKUP function refer to the
following:

- The \textit{lookup_value} argument provides the value the
 VLOOKUP function will ‘match’ in the data
 region on the ‘Information’ worksheet (the area
 that contains the unique data values for each
 student). In our example, it is a reference to the
 student name selected in cell B2 of the
 ‘Instructions’ worksheet. The VLOOKUP
 function uses the name in cell B2 to determine the
 matching row of values on the ‘Information’
 worksheet. For example, if \textit{Linsay} is selected as
 the student name on the ‘Instructions’ worksheet,
 then the VLOOKUP function will match with the
 second row of the data region (worksheet row 3)
 on the ‘Information’ worksheet.

- The \textit{table_array} refers to the location of the data
 region containing the student names and unique
 associated information. In our example, this data
 region is located on the ‘Information’ worksheet in
 range A2:H7.

- The \textit{column_index_num} designates which column
 in the data region \textit{table_array} should be returned
 by the function. Column numbers start with one
 for the leftmost column (of the data region) and
 increment by one for each consecutive column as
 you move to the right. For the data region in our
 example, a column index number of 3 would
 return the ‘Price Increment’ for the row matching
 the student’s name selected in cell B2 on the
 ‘Instructions’ worksheet.

- The optional \textit{range_lookup} argument determines
 whether the VLOOKUP argument determines
 an exact match for the lookup_value (student name)
 or if matching a range of values is allowed. Our
 techniques relies on an exact match for each
 student name; thus, the range_lookup value is
 always set to false.

The TEXT function is used to convert a numeric value to
a formatted string. Note: with our method, the TEXT
function is used only when incorporating dynamic numeric
values into a question prompt; it is not used when
incorporating text (such as ‘Present’ or ‘Future’ in column
E of the ‘Information’ worksheet).

The arguments in the TEXT function refer to the
following:

- The \textit{value} argument is a number, cell reference,
 formula, or function that resolves to a numeric
 value. Our method nests the VLOOKUP function
 within the TEXT function. The \textit{value} argument is
 then a numeric value returned by the VLOOKUP
 function after the function ‘finds’ the correct
 student (row) and variable (column). For example,
 if \textit{Linsay} is selected as the student name (cell B2 of
 the ‘Instructions’ worksheet), and the VLOOKUP
 function has a column index number of 4, then the
 \textit{value} argument of the TEXT function will be the
 tax rate of 0.32 located in cell D2 of the
 ‘Information’ worksheet that is returned by the
 VLOOKUP function.

- The \textit{format_text} argument provides Excel a pattern
 for formatting the numeric \textit{value} argument. Format
 patterns are enclosed in double quotes, and they use
 custom format characters to build a format pattern.
 Common custom format characters include the
 currency sign ($), percentage symbol (%), commas,
 decimal points, the digit 0 (to display significant
 and non-significant numbers), and the character # to
 display only significant numeric values.
 For example, the format pattern \textbf{“$#,##0.00”}
 display a numeric value as currency with two
 decimal places of precision, and a thousand
 separator for number >= 1,000.

The CONCATENATE function is used to join (merge)
one or more text strings into a single string. This
function has one required text string argument \textit{text1}
that can be combined with up to 254 additional optional
strings \textit{[text2], ...}. The string arguments are separated
within the function call by commas. The function’s
arguments can be hard-coded strings (i.e. “dog”), cell references, or function calls that return strings (i.e. VLOOKUP).

To incorporate the dynamic (unique) portion of the assignment, add the formulas shown in Exhibit 1 Panel A to worksheet #1. Notice how the static (generic) text added earlier is now incorporated within the CONCATENATE function and the input values (formerly represented by ‘***’) are now replaced with calls to the TEXT and/or VLOOKUP functions.

Figure 4: ‘Worksheet #1’ Dynamic Values

When the student Linsay is selected from the list in cell B2 of the ‘Instructions’ worksheet, worksheet #1 displays the following question prompt:

The number of units per order start at 100 and increase in increments of 25
The price per unit begins at $14.75 and decreases in increments of 0.50
The tax rate is 32%

Alternatively, when the student Karter is selected from the list in cell B2 of the ‘Instructions’ worksheet, worksheet #1 displays the following question prompt:

The number of units per order start at 100 and increase in increments of 50
The price per unit begins at $14.75 and decreases in increments of 0.75
The tax rate is 34%

Worksheet #1 now provides each student with different inputs for common tasks. Worksheet #2 not only provides different inputs to question prompts, it also requires students to perform different calculations. Worksheet #2 can be modified by incorporating the Excel formulas shown in Exhibit 1 Panel B.

When the student Linsay is selected from the list in cell B2 of the ‘Instructions’ worksheet, worksheet #2 displays the following question prompt (Figure 5):

Figure 5: ‘Worksheet #2’ Values with Student Linsay

Compare the image above to the worksheet created when student Karter is selected from the list in cell B2 of the ‘Instructions’ worksheet (Figure 6). Not only are the numeric inputs listed in the instructions unique (cell A2), the first student is asked to calculate the future value (Figure 5A) and the second student the present value of the financial instrument.

Figure 6: ‘Worksheet #2’ Values with Student Karter

Note: the labels in cell A4 is determined by the VLOOKUP function - the label matches the value in column E of the ‘Information’ worksheet.

The labels in cell C8 and D8 are determined by an IF statement with the following logic:

- If the student is provided with the present value (as with Linsay’s example), then they are asked to compute the future value in columns C and D.
- Else, if the student is provided with the future value (as with Karter’s example), they are asked to compute the present value in columns C and D.

5. Now that the formulas have been added to the Excel file to create a dynamic assignment, worksheet level protection should be enforced to safeguard the code. Worksheet protection relies on both the lock/unlock status of the cell and the protected/unprotected status of the worksheet.

For each worksheet containing the dynamic statements:
- Select the ‘Select All’ button in the upper left corner of the worksheet.
- In the ‘Format Cells’ dialog box, select the ‘Protection’ tab, and ensure that both the ‘Locked’ and ‘Hidden’ check boxes are deselected. This action unlocks all cells for editing (even if worksheet protection is applied).
Select all of the cells containing dynamic code (use the Control key to select non-continuous cells)

In the ‘Format Cells’ dialog box, select the ‘Protection’ tab and check the ‘Locked’ check box. Selecting this option, when combined with worksheet protection, will prohibit students from modifying the content of locked cells.

Check the ‘Hidden’ option if you would like the content of these cells to be hidden from the student. With this option selected, the contents of the cell, when selected, will not display in the formula bar.

Apply worksheet protection through ‘Changes’ group on the ‘Review’ ribbon. The ‘Protect Sheet’ dialog box allows the instructor to set which actions are allowed on locked cells. It is important to note that the instructor’s selection in this area should reflect the capabilities necessary for student to complete the assignment tasks. Applying protection will make some Excel tasks unavailable to students; these tasks will be ‘grayed-out’ on the Excel ribbons when not available.

I recommend using a password so that students are not able to ‘unprotect’ the worksheet and modify the contents of the cells containing dynamic text.

The assignment should be tested prior to its distribution to students to ensure that selecting each student names produce valid assignment text.

If the student name selected in cell B2 of the ‘Instruction’ worksheet does not match any of the student names in column A of the ‘Information’ worksheet, the “#N/A” symbol will display in cells containing the dynamic text (as shown in Figure 9).

6. The final step in this assignment creation process is to disguise the data on the ‘Information’ worksheet and then hide the ‘Information’ worksheet from student view. This step helps to maintain the integrity of the dynamic assignment by removing student access to the ‘working parts’ of this technique.

The disguise the data entered on the ‘Information’ worksheet, make the following changes to the cell range containing the student name and unique data values (Cells A1:H7 in our example):

- Change the fill color to ‘No Fill’
- Change the font color to ‘white’
- Hide the columns containing the data

To hide the worksheet from student view, right-click on the worksheet tab and select the ‘Hide’ option. Instructors also have the option of protecting the structure of a workbook to disallow student from ‘un-hiding’ hidden worksheets.

CONCLUSION

Enforcing academic integrity is vital in providing accurate and meaningful assessments in the college classroom. Through this article, the authors have presented one method that to create unique assessment instruments, which might potentially reduce dishonest ‘over sharing’ behavior on the part of students.

REFERENCES

Mary Funck is an Associate Professor of Finance at Sam Houston State University.

Ashly Smith is an Assistant Professor of Business Communication at Sam Houston State University.
EXHIBIT 1: Formulas for Inserting Dynamic Text

Panel A: Worksheet #1 Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1:</td>
<td>(=\text{CONCATENATE}("The number of units per order start at 100 and increase in increments of ",\text{VLOOKUP}(\text{Instructions!B2,Information!A2:H7,2,FALSE)}))</td>
</tr>
<tr>
<td>B2:</td>
<td>(=\text{CONCATENATE}("The price per unit begins at $14.75 and decreases in increments of ",\text{TEXT}(\text{VLOOKUP}(\text{Instructions!B2,Information!A2:D7,3,FALSE}),"$0.00")))</td>
</tr>
<tr>
<td>B3:</td>
<td>(=\text{CONCATENATE}("The tax rate is ",\text{TEXT}(\text{VLOOKUP}(\text{Instructions!B2,Information!A2:H7,4,FALSE}),"0%")))</td>
</tr>
</tbody>
</table>

Panel B: Worksheet #2 Code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4:</td>
<td>(=\text{CONCATENATE}(\text{VLOOKUP}(\text{Instructions!B2,Information!A2:H7,5,FALSE})," Value"))</td>
</tr>
<tr>
<td>C8:</td>
<td>(=\text{IF}(\text{VLOOKUP}(\text{Instructions!B2,Information!A2:H7,5,FALSE})="Present","FV","PV")&" (formula))</td>
</tr>
<tr>
<td>D8:</td>
<td>(=\text{IF}(\text{VLOOKUP}(\text{Instructions!B2,Information!A2:H7,5,FALSE})="Present","FV","PV")&" (function))</td>
</tr>
</tbody>
</table>